Sec. 27.13 Summary 525

The TCP/IP protocol suite provides separate standards for mail message format and
mail transfer. The mail message format, called 822, uses a blank line to separate a mes-
sage header and the body. The Simple Mail Transfer Protocol (SMTP) defines how a
mail system on one machine transfers mail to a server on another. Version 3 of the
Post Oftice Protocol (POP3) specifies how a user can retrieve the contents of a mailbox;
it allows a user to have a permanent mailbox on a computer with continuous Internet
connectivity and to access the contents from a computer with intermittent connectivity.

The Multipurpose Internet Mail Extensions (MIME) provides a mechanism that al-
lows arbitrary data to be transferred using SMTP. MIME adds lines to the header of an
e-mail message to define the type of the data and the encoding used. MIME's mixed
multipart type permits a single message to contain multiple data types.

FOR FURTHER STUDY

The protocols described in this chapter are all specified in Internet RFCs. Postel
[RFC 821} describes the Simple Mail Transfer Protocol and gives many examples. The
exact format of mail messages is given by Crocker [RFC 822]; many RFCs specify ad-
ditions and changes. Freed and Borenstein [RFCs 2045, 2046, 2047, 2048 and 2049]
specify the standard for MIME, including the syntax of header declarations, the pro-
cedure for creating new content types, the interpretation of content types, and the
buse64 encoding mentioned in this chapter. Partridge [RFC 974] discusses the relation-
ship between mail routing and the domain name system. Horton [RFC 976] proposes a
standard for the UNIX UUCP mail system.

EXERCISES

271 Some mail systems force the user to specify a sequence of machines through which the
message should travel to reach its destination. The mail protocol in each machine mere-
ly passes the message on to the next machine. List three disadvantages of such a
scheme.

27.2 Find out if your computing system allows you to invoke SMTP directly.

27.3 Build an SMTP client and use it to deliver a mail message.

274 See if you can send mail through a mail gateway and back to yourself.

27.5 Make a list of mail address forms that your site handles and write a set of rules for pars-
ing them.

27.6 Find out how the UNIX sendmail program can be used to implement a mail gateway.

27.7 Find out how often your local mail system attempts delivery and how long it will contin-
ue before giving up.

526

278

279

27.10

27.11

27.12
27.13

Applications: Electronic Mail (SMTP, POP, IMAP, MIME) Chap. 27

Many mail systems allow users to direct incoming mail to a program instead of storing it
in a mailbox. Build a program that accepts your incoming mail, places your mail in a
file, and then sends a reply to tell the sender you are on vacation.

Read the SMTP standard carefully. Then use TELNET to connect to the SMTP port on
a remote machine and ask the remote SMTP server to expand a mail alias.

A user receives mail in which the To field specifies the string important-people. The
mail was sent from a computer on which the alias important-people includes no valid
mailbox identifiers. Read the SMTP specification carefully to see how such a situation
is possible.

POP3 separates message retrieval and deletion by allowing a user to retricve and view a
message without deleting it from the permanent mailbox. What are the advantages and
disadvantages of such separation?

Read about POP3. How does the TOP command operate, and why is it useful?

Read the MIME standard carefully. What servers can be specified in a MIME external
reference?

28

Applications: World Wide
Web (HTTP)

28.1 Introduction

This chapter continues the discussion of applications that use TCP/IP technology
by focusing on the application that has had the most impact: the World Wide Web
(WWW). After a brief overview of concepts, the chapter examines the primary protocol
used to transfer a Web page from a server to a Web browser. The discussion covers
caching as well as the basic transfer mechanism.

28.2 Importance Of The Web

During the early history of the Internet, FTP data transfers accounted for approxi-
mately one third of Internet traffic, more than any other application. From its inception
in the early 1990s, however, the Web had a much higher growth rate. By 1995, Web
traffic overtook FTP to become the largest consumer of Internet backbone bandwidth,
and has remained the leader ever since. By 2000, Web traffic completely overshadowed
other applications.

Although traffic is easy to measure and cite. the impact of the Web cannot be un-
derstood from such statistics. More people know about and use the Web than any other
Internet application. Most companies have Web sites and on-line catalogs; references to
the Web appear in advertising. In fact, for many users, the Internet and the Web are in-
distinguishable.

527

528 Apptications: World Wide Web (HTTP) Chap. 28
28.3 Architectural Components

Conceptually, the Web consists of a large set of documents. called Web pages. that
are accessible over the Internet. Each Web page is classified as a hypermedia docu-
ment. The sutfix media is used to indicate that a document can contain items other than
text (e.g., graphics images): the prefix hvper is used because a document can contain
selectable links that refer to other, related documents.

Two main building blocks are used to implernent the Web on top of the global In-
ternet. A Web browser consists of an application program that a user invokes to access
and display a Web page. The browser becomes a client that contacts the appropriate
Web server to obtain a copy of the specified page. Because a given server can manage
more than one Web page. a browser must specify the exact page when making a re-
quest.

The data representation standard used for a Web page depends on its contents. For
example, standard graphics representations such as Graphics Interchange Format (GIF)
or Joint Picture Encoding Group (JPEG) can be used for a page that contains a single
graphics image. Pages that contain a mixture of text and other items are represented us-
ing HvperText Markup Language (HTML). An HTML document consists of a file that
contains text afong with embedded commands, called rags, that give guidelines for
display. A tag is enclosed in less-than and greater-than symbols; some tags come in
pairs that apply to all items between the pair. For example, the two commands
<CENTER> and </CENTER> cause items between them to be centered in the
browser’s window.

28.4 Uniform Resource Locators

Each Web page is assigned a unique name that is used to identify it. The name,
which is called a Uniform Resource Locaror (URL)Y*, begins with a specification of the
scheme used to access the item. In effect, the scheme specifies the transfer protocol; the
format of the remainder of the URL depends on the scheme. For example, a URL that
follows the Attp scheme has the following formi:

hup: /1 hostname [: port] / path [; parameters] [? query]

where brackets denote an optional item. For now, it is sufficient to understand that the
hostname string specifies the domain name or IP address of the computer on which the
server for the item operates, :port is an optional protocol port number needed only in
cases where the server does not use the well-known port (80), path is a string that iden-
tifies one particular document on the server, ;parameters is an optional string that speci-
fies additional parameters supplied by the client, and ’query is an optional string used
when the browser sends a question. A user is unlikely to ever see or use the optional
parts directly. Instead, URLs that a user enters contain only a hostname and path. For
example, the URL:

TA URL is a specific type of the more general Uniform Resource Identifier (URI).
+Some of the literature refers to the initial string. Atp:. as a pragma.

Sec. 28.4 Uniform Resource Locators 529
http: // www.cs.purdue.edu/people/comer/

specifies the author’s Web page. The server operates on computer www.cs.purdue.edu,
and the document is named /people/comer/.

The protocol standards distinguish between the absolute form of a URL illustrated
above, and a relative form. A relative URL. which is seldom seen by a user, is only
meaningful when the server has already been determined. Relative URLs are useful
once communication has been established with a specific server. For example, when
communicating with server www.cs.purdue.edu, only the string /people/comer/ is needed
to specify the document named by the absolute URL above. We can summarize.

Each Web page is assigned a unique identifier known as a Uniform
Resource Locator (URL). The absolute form of a URL contains a full
specification; a relative form that omits the address of the server is
only useful when the server is implicitly known.

28.5 An Example Document

In principle, Web access is straightforward. All access originates with a URL —a
user either enters a URL via the keyboard or selects an item which provides the browser
with a URL. The browser parses the URL, extracts the information, and uses it to ob-
tain a copy of the requested page. Because the format of the URL depends on the
scheme, the browser begins by extracting the scheme specification, and then uses the
scheme to determine how to parse the rest of the URL.

An example will illustrate how a URL is produced from a selectable link in a do-
cument. In fact, a document contains a pair of values for each link: an item to be
displayed on the screen and a URL to follow if the user selects the item. In HTML. the
pair of tags <A> and are known as an anchor. The anchor defines a link: a URL
is added to the first tag, and items to be displayed are placed between the two tags. The
browser stores the URL internally, and follows it when the user selects the link. For
example, the following HTML document contains a selectable link:

<HIML>
The author of this text is

Douglas Camer.

</HIML>

When the document is displayed, a single line of text appears on the screen:

The author of this text is Douglas Comer.

530 Applications: World Wide Web (HTTP) Chap. 28

The browser underlines the phrase Douglas Comer to indicate that it corresponds
to a selectable link. Internally, of course. the browser stores the URL from the <A>
tag, which it follows when the user selects the link.

28.6 Hypertext Transfer Protocol

The protocol used for communication between a browser and a Web server or
between intermediate machines and Web servers is known as the HyperText Transfer
Protocol (HTTP). HTTP has the following set of characteristics:

Application Level. HTTP operates at the application level. It assumes
a reliable, connection-oriented transport protocol such as TCP, but does not
provide reliability or retransmission itself.

Request/Response. Once a transport session has been established, one
side (usually a browser) must send an HTTP request to which the other side
responds.

Stateless. Each HTTP request is self-contained: the server does not
keep a history of previous requests or previous sessions.

Bi-Directional Transfer. In most cases, a browser requests a Web
page, and the server transfers a copy to the browser. HTTP also allows
transfer from a browser to a server (e.g., when a user submits a so-called
“form’’).

Capability Negotiation. HTTP allows browsers and servers to nego-
tiate details such as the character set to be used during transfers. A sender
can specify the capabilities it offers and a receiver can specify the capabili-
ties it accepts.

Support For Caching. To improve response time, a browser caches a
copy of each Web page it retrieves. If a user requests a page again, HTTP
allows the browser to interrogate the server to determine whether the con-
tents of the page has changed since the copy was cached.

Support For Intermediaries. HTTP allows a machine along the path
between a browser and a server to act as a proxy server that caches Web
pages and answers a browser’s request from its cache.

28.7 HTTP GET Request

In the simplest case, a browser contacts a Web server directly to obtain a page.
The browser begins with a URL, extracts the hostname section, uses DNS to map the
name into an equivalent IP address, and uses the IP address to form a TCP connection

Sec. 28.7 HTTP GET Request 531

to the server. Once the TCP connection is in place, the browser and Web server use
HTTP to communicate; the browser sends a request to retrieve a specific page, and the
server responds by sending a copy of the page.

A browser sends an HTTP GET command to request a Web page from a servert.
The request consists of a single line of text that begins with the keyword GET and is
followed by a URL and an HTTP version number. For example, to retrieve the Web
page in the example above from server www.cs.purdue.edu, a browser can send the fol-
lowing request:

GET http://www.cs.purdue.edu/people/comer/ HTTP/1.1

Once a TCP connection is in place, there is no need to send an absolute URL — the
following relative URL will retrieve the same page:

GET /people/comer/ HTTP/1.0

To summarize:

The Hypertext Transfer Protocol (HTTP) is used between a browser
and a Web server. The browser sends a GET request to which a
server responds by sending the requested item.

28.8 Error Messages

How should a Web server respond when it receives an illegal request? In most
cases, the request has been sent by a browser, and the browser will attempt to display
whatever the server returns. Consequently, servers usually generate error messages in
valid HTML. For example, one server generates the following error message:

<HIML>
<HEAD> <TTTLE>400 Bad Request</TITLE>
</HERD>
<BODY>
<H1>Bad Request</Hl> Your browser sent a request
that this server could not understand.
</BODY>
</HMML>

The browser uses the ‘‘head”’ of the document (i.e., the items between <HEAD> and
</HEAD>) internally, and only shows the ‘‘body’’ to the user. The pair of tags <H1>
and </H1> causes the browser to display Bad Request as a heading (i.e., large and
bold), resulting in two lines of output on the user’s screen:

+The standard uses the object-oriented term method instead of command.

532 Applications: World Wide Web (HTTP) Chap. 28

Bad Request

Your browser sent a request that this server could not understand.

28.9 Persistent Connections And Lengths

Early versions of HTTP follow the same paradigm as FTP by using a new TCP
connection for each data transfer. That is, a client opens a TCP connection and sends a
GET request. The server transmits a copy of the requested item, and then closes the
TCP connection. Until it encounters an end of file condition, the client reads data from
the TCP connection. Finally, the client closes its end of the connection.

Version 1.1, which appeared as an RFC in June of 1999, changed the basic HTTP
paradigm in a fundamental way. Instead of using a TCP connection for each transfer,
version 1.1 adopts a persistent connection approach as the default. That is, once a
client opens a TCP connection to a particular server, the client leaves the connection in
place during multiple requests and responses. When either a client or server is ready to
close the connection, it informs the other side, and the connection is closed.

The chief advantage of persistent connections lies in reduced overhead — fewer
TCP connections means lower response latency, less overhead on the underlying net-
works, less memory used for buffers, and less CPU time used. A browser using a per-
sistent connection can further optimize by pipelining requests (i.e., send requests back-
to-back without waiting for a response). Pipelining is especially attractive in situations
where multiple images must be retrieved for a given page, and the underlying internet
has both high throughput and long delay.

The chief disadvantage of using a persistent connection lies in the need to identify
the beginning and end of each item sent over the connection. There are two possible
techniques that handle the situation: either send a length followed by the item, or send a
sentjnel value after the item to mark the end. HTTP cannot reserve a sentinel value be-
cause the items transmitted include graphics images that can contain arbitrary sequences
of octets. Thus, to avoid ambiguity between sentinel values and data, HTTP uses the
approach of sending a length followed by an item of that size.

28.10 Data Length And Program Output

It may not be convenient or even possible for a server to know the length of an
item before sending. To understand why, one must know that servers use the Common
Gateway Interface (CGI) mechanism that allows a computer program running on the
server machine to create a Web page dynamically. When a request arrives that
corresponds to one of the CGI-generated pages, the server runs the appropriate CGI pro-
gram, and sends the output from the program back to the client as a response. Dynamic
Web page generation allows the creation of information that is current (e.g., a list of the
current scores in sporting events), but means that the server may not know the exact
data size in advance. Furthermore, saving the data to a file before sending it is undesir-

Sec. 28.10 Data Length And Program Output 533

able for two reasons: it uses resources at the server and delays transmission. Thus, to
provide for dynamic Web pages, the HTTP standard specifies that if the server does not
know the length of an item a priori, the server can inform the browser that it will close
the connection after transmitting the item. To summarize:

To allow a TCP connection to persist through multiple requests and
responses, HTTP sends a length before each response. If it does not
know the length, a server informs the client, sends the response, and
then closes the connection.

28.11 Length Encoding And Headers

What representation does a server use to send length information? Interestingly,
HTTP borrows the basic format from e-mail, using 822 format and MIME Extensionst.
Like a standard 822 message, each HTTP transmission contains a header, a blank line,
and the item being sent. Furthermore, each line in the header contains a keyword, a
colon, and information. Figure 28.2 lists a few of the possible headers and their mean-

ing.

Header Meaning
Content-Length Size of item in octets
Content-Type Type of the item

Content-Encoding Encoding used for item
Content-Language Language(s) used in item

Figure 28.1 Examples of items that can appear in the header sent before an
item. The Content-Type and Content-Encoding are taken directly
from MIME.

As an example, consider Figure 28.2 which shows a few of the headers that are
used when a HTML document is transferred across a persistent TCP connection.

Content-Length: 34
Content-Language: en
Content-Encoding: ascii

<HIML> A trivial example. </HIML>

Figure 28.2 An illustration of an HTTP transfer with header lines used to
specify attributes, a blank line, and the document itself. A
Content-Length header is required if the connection is persistent.

+See Chapter 27 for a discussion of e-mail, 822 format, and MIME.

534 Applications: World Wide Web (HTTP) Chap. 28

In addition to the examples shown in the figure, HTTP includes a wide variety of
headers that allow a browser and server to exchange meta information. For example,
we said that if a server does not know the length of an item, the server closes the con-
nection after sending the item. However, the server does not act without warning — the
server informs the browser to expect a close. To do so, the server includes a Connec-
tion header before the item in place of a Content-Length header:

Connection: close

When it receives a connection header, the browser knows that the server intends to
close the connection after the transfer; the browser is forbidden from sending further re-
quests. The next sections describe the purposes of other headers.

28.12 Negotiation

In addition to specifying details about an item being sent, HTTP uses headers to
permit a client and server to negotiate capabilities. The set of negotiable capabilities in-
cludes a wide variety of characteristics about the connection (e.g., whether access is au-
thenticated), representation (e.g., whether graphics images in jpeg format are acceptable
or which types of compression can be used), content (e.g., whether text files must be in
English), and control (e.g., the length of time a page remains valid).

There are two basic types of negotiation: server-driven and agent-driven (i.e.,
browser-driven). Server-driven negotiation begins with a request from a browser. The
request specifies a list of preferences along with the URL of the desired item. The
server selects, from among the available representations, one that satisfies the browser’s
preferences. If multiple items satisfy the preferences, the server makes a *‘best guess.”’
For example, if a document is stored in multiple languages and a request specifies a
preference for English, the server will send the English version.

Agent-driven negotiation simply means that a browser uses a two-step process to
perform the selection. First, the browser sends a request to the server to ask what is
available. The server returns a list of possibilities. The browser selects one of the pos-
sibilities, and sends a second request to obtain the item. The disadvantage of agent-
driven negotiation is that it requires two server interactions; the advantage is that a
browser retains complete control over the choice.

A browser uses an HTTP Accept header to specify which media or representations
are acceptable. The header lists names of formats with a preference value assigned to
each. For example,

Accept: text/html, text/plain; g=0.5, text/x-dvi; g=0.8
specifies that the browser is willing to accept the text/html media type, but if that does

not exist, the browser will accept text/x-dvi, and, if that does not exist, text/plain. The
numeric values associated with the second and third entry can be thought of as a prefer-

Sec. 28.12 Negotiation 535

ence level, where no value is equivalent to g=1, and a value of g=0 means the type is
unacceptable. For media types where ‘‘quality’’ is meaningful (e.g., audio), the value
of ¢ can be interpreted as a willingness to accept a given media type if it is the best
available after other forms are reduced in quality by ¢ percent.

A variety of Accept headers exist that correspond to the Content headers described
earlier. For example, a browser can send any of the following:

Accept-Encoding:
Accept-Charset:
Accept-Language:

to specify which encodings, character sets, and languages the browser is willing to ac-
cept. _
To summarize:

HTTP uses MIME-like headers to carry meta information. Both
browsers and servers send headers that allow them to negotiate
agreement on the document representation and encoding to be used.

28.13 Conditional Requests

HTTP «lows a sender to make a request conditional. That is, when a browser
sends a request. it includes a header that qualifies conditions under which the request
should be honored. If the specified condition is not met, the server does not return the
requested item. Conditional requests allow a browser to optimize retrieval by avoiding
unnecessary transfers. The If-Modified-Since request specifies one of the most straight-
forward conditionals — it allows a browser to avoid transferring an item unless the item
has been updated since a specified date. For example, a browser can include the
header:

If-Modified-Since: Sat, 01 Jan 2000 05:00:01 GMT

with a GET request to avoid a transfer if the item is older than January 1, 2000.

28.14 Support For Proxy Servers

Proxy servers are an important part of the Web architecture because they provide
an optimization that decreases latency and reduces the load on servers. However, prox-
ies are not transparent — a browser must be configured to contact a local proxy instead
of the original source, and the proxy must be configured to cache copies of Web pages.
For example, a corporation in which many employees use the Internet may choose to
have a proxy server. The corporation configures all its browsers to send requests to the

536 Applications: World Wide Web (HTTP) Chap. 28

proxy. The first time a user in the corporation accesses a given Web page, the proxy
must obtain a copy from the server that manages the page. The proxy places the copy
in its cache, and returns the page as the response to the request. The next time a user
accesses the same page, the proxy extracts the data from its cache without sending a re-
quest across the Internet. Consequently, traffic from the site to the Internet is signifi-
cantly reduced.

To guarantee correctness, HTTP includes explicit support for proxy servers. The
protocol specifies exactly how a proxy handles each request, how headers should be in-
terpreted by proxies, how a browser negotiates with a proxy, and how a proxy nego-
tiates with a server. Furthermore, several HTTP headers have been designed specifical-
ly for use by proxies. For example, one header allows a proxy to authenticate itself to a
server, and another allows each proxy that handles an item to record its identity so the
ultimate recipient receives a list of all intermediate proxies. Finally, HTTP allows a
server to control how proxies handle each Web page. For example, a server can include
the Max-Forwards header in a response to limit the number of proxies that handle an
item before it is delivered to a browser. If the server specifies a count of one, as in:

Max-Forwards: |

at most one proxy can handle the item along the path from the server to the browser. A
count of zero prohibits any proxy from handling the item.

28.15 Caching

The goal of caching is improved efficiency: a cache reduces both latency and net-
work traffic by eliminating unnecessary transfers. The most obvious aspect of caching
is storage: when a Web page is initially accessed, a copy is stored on disk, either by the
browser, an intérmediate proxy, or both. Subsequent requests for the same page can
short-circuit the lookup process and retrieve a copy of the page from the cache instead
of the server.

The central question in all caching schemes concerns timing — how long should
an item be kept in a cache? On one hand, keeping a cached copy too long results in the
copy becoming stale, which means that changes to the original are not reflected in the
cached copy. On the other hand, if the cached copy is not kept long enough, inefficien-
cy results because the next request must go back to the server.

HTTP allows a server to control caching in two ways. First, when it answers a re-
quest for a page, a server can specify caching details, including whether the page can be
cached at all, whether a proxy can cache the page, the community with which a cached
copy can be shared, the time at which the cached copy must expire, and limits on
transformations that can be applied to the copy. Second, HTTP allows a browser to
force revalidation of a page. To do so, the browser sends a request for the page, and
uses a header to specify that the maximum ‘‘age’” (i.e., the time since a copy of the
page was stored) cannot be greater than zero. No copy of the page in a cache can be

Sec. 28.15 Caching 537

used to satisfy the request because the copy will have a nonzero age. Thus, only the
original server will answer the request. Intermediate proxies along the way will receive
a fresh copy for their cache as will the browser that issued the request.

To summarize:

Caching is key to the efficient operation of the Web. HTTP allows
servers to control whether and how a page can be cached as well as
its lifetime; a browser can force a request for a page to bypass caches
and obtain a fresh copy from the server that owns the page.

28.16 Summary

The World Wide Web consists of hypermedia documents stored on a set of Web
servers and accessed by browsers. Each document is assigned a URL that uniquely
identifies it; the URL specifies the protocol used to retrieve the document, the location
of the server, and the path to the document on that server.

The HyperText Markup Language, HTML, allows a document to contain text
along with embedded commands that control formatting. HTML also allows a docu-
ment to contain links to other documents.

A browser and server use the HyperText Transfer Protocol, HTTP, to communi-
cate. HTTP is an application-level protocol with explicit support for negotiation, proxy
servers, caching, and persistent connections.

FOR FURTHER STUDY

Berners-Lee, et. al. [RFC 1768] defines URLs. A variety of RFCs contain propo-
sals for extensions. Daniel and Mealling [RFC 2168] considers how to store URLs in
the Domain Name System.

Berners-Lee and Connolly [RFC 1866] contains the standard for version 2 of
HTML. Nebel and Masinter [RFC 1867] specifies HTML form upload, and Raggett
[RFC 1942] gives the standard for tables in HTML.

Fielding et. al. [RFC 2616] specifies version 1.1 of HTTP, which adds many
features, including additional support for persistence and caching, to the previous ver-
sion. Franks et. al. [RFC 2617] considers access authentication in HTTP.

538

Applications: World Wide Web (HTTP) Chap. 28

EXERCISES

28.1 Read the standard for URLs. What does a pound sign (#) followed by a string mean at
the end of a URL?

28.2 Extend the previous exercise. Is it legal to send the pound sign suffix on a URL to0 a
Web server? Why or why not?

28.3 How does a browser distinguish between a document that contains HTML and a docu-
ment that contains arbitrary text? To find out, experiment by using a browser to read
from a file. Does the browser use the name of the file or the contents to decide how to
interpret the file?

28.4 What is the purpose of an H2'TP TRACE command?

28.5 What is the difference between an HTTP PUT command and an HTTP POST command?
When is each useful?

28.6 When is an HTTP Keep-Alive header used?

28.7 Can an arbitrary Web server function as a proxy? To find out, choose an arbitrary Web
server and configure your browser to use it as a proxy. Do the results surprise you?

28.8 Read about HTTP’s must-revalidate cache control directive. Give an example of a Web
page that would use such a directive.

28.9 If a browser does not send an HTTP Content-Length header before a request, how does a

server respond’

29

Applications: Voice And
Video Over IP (RTP)

29.1 Introduction

This chapter focuses on the transfer of real-time data such as voice and video over
an IP network. In addition to discussing the protocols used to transport such data, the
chapter considers two broader issues. First, it examines the question of how IP can be
used to provide commercial telephone service. Second, it examines the question of how
routers in an IP network can guarantee sufficient service to provide high-quality video
and audio reproduction.

Although it was designed and optimized to transport data, IP has successfully car-
ried audio and video since its inception. In fact, researchers began to experiment with
audio transmission across the ARPANET before the Internet was in place. By the
1990s, commercial radio stations were sending audio across the Internet, and-software
was available that allowed an individual to send audio across the Internet or to the stan-
dard telephone network. Commercial telephone companies also began using IP technol-
ogy internally to carry voice.

29.2 Audio Clips And Encoding Standards

The simplest way to transfer audio across an IP network consists of digitizing an
analog audio signal to produce a data file, using a conventional protocol to transfer the
file, and then decoding the digital file to reproduce the original analog signal. Of
course, the technique does not work well for interactive exchange because placing en-

539

540 Applications: Voice And Video Over IP (RTP) Chap. 29

coded audio in a file and transferring the file introduces a long delay. Thus, file transfer
is typically used to send short audio recordings, which are known as audio clips.

Special hardware is used to form high-quality digitized audio. Known as a
coder/decoder (codec), the device can covert in either direction between an analog au-
dio signal and an equivalent digital representation. The most common type of codec, a
waveform coder, measures the amplitude of the input signal at regular intervals and con-
verts each sample into a digital value (i.e., an integer)f. To decode, the codec takes a
sequence of integers as input and recreates the continuous analog signal that matches
the digital values.

Several digital encoding standards exist, with the main tradeoff being between
quality of reproduction and the size of digital representation. For example, the conven-
tional telephone system uses the Pulse Code Modulation (PCM) standard that specifies
taking an 8-bit sample every 125 pseconds (i.e., 8000 times per second). As a result, a
digitized telephone call produces data at a rate of 64 Kbps. The PCM encoding pro-
duces a surprising amount of output — storing a 128 second audio clip requires one
megabyte of memory.

There are three ways to reduce the amount of data generated by digital encoding:
take fewer samples per second, use fewer bits to encode each sample, or use a digital
compression scheme to reduce the size of the resulting output. Various systems exist
that use one or more of the techniques, making it possible to find products that produce
encoded audio at a rate of only 2.2 Kbps. However, each technique has disadvantages.
The chief disadvantage of taking fewer samples or using fewer bits to encode a sample
is lower quality audio — the system cannot reproduce as large a range of sounds. The
chief disadvantage of compression is delay — digitized output must be held while it is
compressed. Furthermore, because greater reduction in size requires more processing,
the best compression either requires a fast CPU or introduces longer delay. Thus,
compression is most useful when delay is unimportant (e.g., when the output from a
codec is being stored in a file).

29.3 Audio And Video Transmission And Reproduction

Many audio and video applications are classified as real-time because they require
timely transmission and deliveryf. For example, an interactive telephone call is a real-
time exchange because audio must be delivered without significant delay or users find
the system unsatisfactory. Timely transfer means more than low delay because the
resulting signal is unintelligible unless it is presented in exactly the same order as the
original, and with exactly the same timing. Thus, if a sender takes a sample every 125
u seconds, the receiver must convert digital values to analog at exactly the same rate.

How can a network guarantee that the stream is delivered at exactly the same rate
that the sender used? The conventional telephone system introduced one answer: an
isochronous architecture. Isoctironous design means that the entire system, including
the digital circuits, must be engineered to deliver output with exactly the same timing as
was used to generate input. Thus, an isochronous system that has multiple paths
between any two points must be engineered so all paths have exactly the same delay.

+An alternative known as a voice coder/decoder (vocodec) recognizes and encodes human speech rather
than general waveforms.
+Timeliness is more important than reliability; missing data is merely skipped.

Sec. 29.3 Audio And Video Transmission And Reproduction 541

An [P internet is not isochronous. We have already seen that datagrams can be du-
plicated, delayed, or arrive out of order. Variance in delay is called jitter, and is espe-
cially pervasive in IP networks. To allow meaningful transmission and reproduction of -
digitized signals across a network with IP semantics, additional protocol support is re-
quired. To handle datagram duplication and out-of-order delivery, each transmission
must contain a sequence number. To handle jitter, each transmission must contain a
timestamp that tells the receiver at which time the data in the packet should be played
back. Separating sequence and timing information allows a receiver to reconstruct the
signal accurately independent of how the packets arrive. Such timing information is
especially critical when a datagram is tost or if the sender stops encoding during periods
of silence; it allows the receiver to pause during playback the amount of time specified
by the timestamps. To summarize:

Because an IP internet is not isochronous, additional protocol support
is required when sending digitized real-time data. In addition to
basic sequence information that allows detection of duplicate or reor-
dered packets, each packet must carry a separate timestamp that tells
the receiver the exact time at which the data in the packet should be
played.

29.4 Jitter And Playback Delay

How can a receiver recreate a signal accurately if the network introduces jitter?
The receiver must implement a plavback buffert as Figure 29.1 illustrates.

items inserted at | i Il Hl items extracted

. —_— U -
a variable rate ! 1 j at a fixed rate
i I

|<——K——-—>

Figure 29.1 The conceptual organization of a playback buffer that compen-
sates for jitter. The buffer holds K time units of data.

When a session begins, the receiver delays playback and places incoming data in
the buffer. When data in the buffer reaches a predetermined threshold, known as the
playback point, output begins. The playback point, labeled K in the figure, is measured
in time units of data to be played. Thus, playback begins when a receiver has accumu-
lated K time unit’s worth of data.

As playback proceeds, datagrams continue to arrive. If there is no jitter, new data
will arrive at exactly the same rate old data is being extracted and played, meaning the
buffer will always contain exactly K time units of unplayed data. If a datagram experi-

+A playback buffer is also called a jitrer buffer.

542 Applications: Voice And Video Over IP (RTP) Chap. 29

ences a small delay, playback is unaffected. The buffer size decreases steadily as data
is extracted, and playback continues uninterrupted for K time units. When a delayed
datagram arrives, the buffer is refilled.

Of course, a playback buffer cannot compensate for datagram loss. In such cases,
playback eventually reaches an unfilled position in the buffer, and output pauses for a
time period corresponding to the missing data. Furthermore, the choice of K is a
compromise between loss and delayt. If K is too small, a small amount of jitter causes
the system to exhaust the playback buffer before the needed data arrives. If X is too
large, the system remains immune to jitter, but the extra delay, when added to the
transmission delay in the underlying network, may be noticeable to users. Despite the
disadvantages, most applications that send real-time data across an IP internet depend
on playback buffering as the primary solution for jitter.

29.5 Real-Time Transport Protocol (RTP)

The protocol used to transmit digitized audio or video signals over an IP internet is
known as the Real-Time Transport Protocol (RTP). Interestingly, RTP does not contain
mechanisms that ensure timely delivery: such guarantees must be made by the underly-
ing system. Instead, RTP provides two key facilities: a sequence number in each packet
that allows a receiver to detect out-of-order delivery or loss, and a timestamp that al-
lows a receiver to control playback.

Because RTP is designed to carry a wide variety of real-time data, including both
audio and video, RTP does not enforce a uniform interpretation of semantics. Instead,
each packet begins with a fixed header; fields in the header specify how to interpret
remaining header fields and how to interpret the payload. Figure 29.2 illustrates the
format of RTP’s fixed header.

01 3 8 16 31
VER|P|X] CC M PTYPE SEQUENCE NUM
TIMESTAMP
SYNCHRONIZATION SOURCE IDENTIFIER
CONTRIBUTING SOURCE ID

Figure 29.2 Illustration of the fixed header used with RTP. Each message
begins with this header; the exact interpretation and additional
header fields depend on the payload type, PTYPE.

TAlthough network delay and jitter can be used to determine a value for K dynamically, many playback
buffering schemes use a constant.

Sec. 29.5 Real-Time Transport Protocol (RTP) 543

As the figure shows, each packet begins with a two-bit RTP version number in
field VER; the current version is 2. The sixteen-bit SEQUENCE NUM field contains a
sequence number for the packet. The first sequence number in a particular session is
chosen at random. Some applications define an optional header extension to be placed
between the fixed header and the payload. If the application type allows an extension,
the X bit is used to specity whether the extension is present in the packet. The interpre-
tation of most of the remaining fields in the header depends on the seven-bit PTYPE
field that specifies the payload type. The P bit specifies whether zero padding follows
the payload; it is used with encryption that requires data to be allocated in fixed-size
blocks. Interpretation of the M (‘‘marker’’) bit also depends on the application; it is
used by applications that need to mark points in the data stream (e.g., the beginning of
each frame when sending video).

The payload type also affects the interpretation of the TIMESTAMP field. A times-
tamp is a 32-bit value that gives the time at which the first octet of digitized data was
sampled, with the initial timestamp for a session chosen at random. The standard speci-
fies that the timestamp is incremented continuously, even during periods when no signal
is detected and no values are sent, but it does not specity the exact granularity. Instead,
the granularity is determined by the payload type, which means that each application
can choose a clock granularity that allows a receiver to position items in the output with
accuracy appropriate to the application. For example. if a stream of audio data is being
transmitted over RTP, a logical timestamp granularity of one clock tick per sample is
appropriatet. However, if video data is being transmitted, the timestamp granularity
needs to be higher than one tick per frame to achieve smooth playback. In any case, the
standard allows the timestamps in two packets to be identical, if the data in the two
packets was sampled at the same time.

29.6 Streams, Mixing, And Multicasting

A key part of RTP is its support for rranslation (i.e., changing the encoding of a
stream at an intermediate station) or mixing (i.e., receiving streams of data from multi-
ple sources, combining them into a single stream, and sending the result). To under-
stand the need for mixing, imagine that individuals at multiple sites participate in a
conference call using IP. To minimize the number of RTP streams, the group can
designate a mixer, and arrange for each site to establish an RTP session to the mixer.
The mixer combines the audio streams (possibly by ¢onverting them back to analog and
resampling the resulting signal), and sends the result as a single digital stream.

Fields in the RTP header identify the sender and indicate whether mixing occurred.
The field labeled SYNCHRONIZATION SOURCE IDENTIFIER specifies the source of a
stream. Each source must choose a unique 32-bit identifier; the protocol includes a
mechanism for resolving conflicts if they arise. When a mixer combines multiple
streams, the mixer becomes the synchronization source for the new stream. Information
about the original sources is not lost, however, because the mixer uses the variable-size
CONTRIBUTING SOURCE ID field to provide the synchronization IDs of streams that

+The TIMESTAMP is sometimes referred to as a MEDIA TIMESTAMP to emphasize that its granularity
depends on the type of signal being measured.

544 Applications: Voice And Video Over IP (RTP) Chap. 29

were mixed together. The four-bit CC field gives a count of contributing sources; a
maximum of 15 sources can be listed.

RTP is designed to work with IP multicasting, and mixing is especially attractive
in a multicast environment. To understand why, imagine a teleconference that includes
many participants. Unicasting requires a station to send a copy of each outgoing RTP
packet to each participant. With multicasting, however, a station only needs to send
one copy of the packet, which will be delivered to all participants. Furthermore, if mix-
ing is used, all sources can unicast to a mixer, which combines them into a single
stream before multicasting. Thus, the combination of mixing and multicast results in
substantially fewer datagrams being delivered to each participating host.

29.7 RTP Encapsulation

Its name implies that RTP is a transport-level protocol. Indeed, if it functioned
like a conventional transport protocol, RTP would require each message to be encapsu-
lated directly in an IP datagram. In fact, RTP does not function like a transport proto-
col; although it is allowed, direct encapsulation in IP does not occur in practice. In-
stead, RTP runs over UDP, meaning that each RTP message is encapsulated in a UDP
datagram. The chief advantage of using UDP is concurrency — a single computer can
have multiple applications using RTP without interference.

Unlike many of the application protocols we have seen, RTP does not use a
reserved UDP port number. Instead, a port is allocated for use with each session, and
the remote application must be informed about the port number. By convention, RTP
chooses an even numbered UDP port; the following section explains that a companion
protocol, RTCP, uses the next port number.

29.8 RTP Control Protocol (RTCP)

So far, our description of real-time transmission has focused on the protocol
mechanisms that allow a receiver to reproduce content. However. another aspect of
real-time transmission is equally important: monitoring of the underlying network dur-
ing the session and providing out of band communication between the endpoints. Such
a mechanism is especially important in cases where adaptive schemes are used. For ex-
ample, an application might choose a lower-bandwidth encoding when the underlying
network becomes congested, or a receiver might vary the size of its playback buffer
when network delay or jitter changes. Finally, an out-of-band mechanism can be used
to send information in parallel with the real-time data (e.g., captions to accompany a
video stream).

A companion protocol and integral part of RTP, known as the RTP Control Proto-
col (RTCP), provides the needed control functionality. RTCP allows senders and re-
ceivers to transmit a series of reports to one another that contain additional information
about the data being transferred and the performance of the network. RTCP messages

Sec. 29.8 RTP Control Protocol (RTCP) 545

are encapsulated in UDP for transmissiont, and are sent using a protocol number one
greater than the port number of the RTP stream to which they pertain.

29.9 RTCP Operation

RTCP uses five basic message types to allow senders and receivers to exchange in-
formation about a session. Figure 29.3 lists the types.

Type Meaning

200 Sender report

201 Receiver report

202 Source description message
203 Bye message

204 Application specific message

Figure 29.3 The five RTCP message types. Each message begins with a
fixed header that identifies the type.

The bve and application specific messages are the most straightforward. A sender
transmits a bye message when shutting down a stream. The application specific mes-
sage type provides an extension of the basic facility to allow the application to define a
message type. For example, an application that sends a closed caption to accompany a
video stream might choose to define an RTCP message that supports closed captioning.

Receivers periodically transmit receiver report messages that inform the source
about conditions of reception. Receiver reports are important for two reasons. First,
they allow all receivers participating in a session as well as a sender to learn about re-
ception conditions of other receivers. Second, they allow receivers to adapt their rate of
reporting to avoid using excessive bandwidth and overwhelming the sender. The adap-
tive scheme guarantees that the total control traffic will remain less than 5% of the
real-time data traffic, and that receiver reports generate less than 75% of the control
traffic. Each receiver report identifies one or more synchronization sources, and con-
tains a separate section for each. A section specifies the highest sequence number pack-
et received from the source, the cumulative and percentage packet loss experienced,
time since the last RTCP report arrived from the source, and the interarrival jitter.

Senders periodically transmit a sender report message that provides an absolute
timestamp. To understand the need for a timestamp, recall that RTP allows each stream
to choose a granularity for its timestamp and that the first timestamp is chosen at ran-
dom. The absolute timestamp in a sender report is essential because it provides the
only mechanism a receiver has to synchronize multiple streams. In particular, because
RTP requires a separate stream for each media type, the transmission of video and ac-
companying audio requires two streams. The absolute timestamp information allows a
receiver to play the two streams simultaneously.

+Because some messages are short. the standard allows multiple RTCP messages to be combined into a
single UDP datagram for transmission.

546 Applications: Voice And Video Over IP (RTP) Chap. 29

In addition to the periodic sender report messages, senders also transmit source
description messages which provide general information about the user who owns or
controls the source. Each message contains one section for each outgoing RTP stream;
the contents are intended for humans to read. For example, the only required tield con-
sists of a canonical name for the stream owner, a character string in the form:

user @ host

where host is either the domain name of the computer or its IP address in dotted de-
cimal form. and user is a login name. Optional fields in the source description contain
turther details such as the user’s e-mail address (which may differ from the canonical
name), telephone number, the geographic location of the site, the application program or
tool used to create the stream, or other textual notes about the source.

29.10 IP Telephony And Signaling

One aspect of real-time transmission stands out as especially important: the use of
IP as the foundation for telephone service. Known as IP telephony or voice over IP, the
idea is endorsed by many telephone companies. The question arises, ‘*what additional
technologies are needed before IP can be used in place of the existing isochronous tele-
phone system?"” Although no simple answer exists, researchers are investigating three
components. First, we have seen that a protocol like RTP is needed to transfer a digi-
tized sighal across an IP internet correctly. Second, a mechanism is needed to establish
and terminate telephone calls. Third, researchers are exploring ways an IP internet can
be made to function like an isochronous network.

The telephone industry uses the term signaling to refer to the process of establish-
ing a telephone call. Specifically. the signaling mechanism used in the conventional
Public Switched Telephone Network (PSTN) is Signaling System 7 (§87). SS7 performs
call routing before any audio is sent. Given a phone number, it forms a circuit through
the network, rings the designated telephone, and connects the circuit when the phone is
answered. SS7 also handles details such as call forwarding and error conditions such as
the destination phone being busy.

Before IP can be used to make phone calls, signaling functionality must be avail-
able. Furthermore, to enable adoption by the phone companies, IP telephony must be
compatible with extant telephone standards — it must be possible for the IP-telephony
system to interoperate with the conventional phone system at all levels. Thus, it must
be possible to translate between the signaling used with IP and SS7 just as it must be
possible to translate between the voice encoding used with IP and standard PCM encod-
ing. As a consequence, the two signaling mechanisms will have equivalent functionali-
ty.

The general approach to interoperability uses a gateway between the [P phone sys-
tem and the conventional phone system. A call can be initiated on either side of the
gateway. When a signaling request arrives, the gateway translates and forwards the re-

Sec. 29.10 IP Telephony And Signaling 547

quest; the gateway must also translate and forward the response. Finally, after signaling
is complete and a call has been established, the gateway must forward voice in both
directions, translating from the encoding used on one side to the encoding used on the
other.

Two groups have proposed standards for IP telephony. The ITU has defined a
suite of protocols known as H.323, and the IETF has proposed a signaling protocol
known as the Session Initiation Protocol (SIP). The next sections summarize the two
approaches.

29.10.1 H.323 Standards

The ITU originally created H.323 to allow the transmission of voice over local area
network technologies. The standard has been extended to allow transmission of voice
over IP internets, and telephone companies are expected to adopt it. H.323 is not a sin-
gle protocol. Instead, it specifies how multiple protocols can be combined to form a
functional IP telephony system. For example, in addition to gateways, H.323 defines
devices known as gatekeepers that each provide a contact point for telephones using IP.
To obtain permission to place outgoing calls and enable the phone system to correctly
route incoming calls, each IP telephone must register with a gatekeeper; H.323 includes
the necessary protocols.

In addition to specifying a protocol for the transmission of real-time voice and
video, the H.323 framework allows participants to transfer data. Thus, a pair of users
engaged in an audio-video conference can also share an on-screen whiteboard, send still
images, or exchange copies of documents.

H.323 relies on the four major protocols listed in Figure 29.4.

Protocol Purpose

H.225.0 Signaling used to establish a call

H.245 Control and feedback during the call

RTP Real-time data transfer (sequence and timing)
T.120 Exchange of data associated with a call

Figure 29.4 The protocols used by H.323 for IP telephony.

Together, the suite of protocols covers all aspects of IP telephony, including phone
registration, signaling, real-time data encoding and transfer (both voice and video), and
control.

Figure 29.5 illustrates relationships among the protocols that comprise H.323. As
the figure shows, the entire suite ultimately depends on UDP and TCP running over IP.

548 Applications: Voice And Video Over IP (RTP) Chap. 29

audio/video applications signaling and control applci’:;?ions
video audio
codec codec RTCP H.225 H.225 H.245 T.120
Registr. | Signalin Control Data
RTP 9 gnaiing
uop TCP
1P

Figure 29.5 Relationship among protocols that comprise the ITU's H.323 1P
telephony standard.

29.10.2 Session Initiation Protocol (SIP)

The 1IETF has proposed an alternative to H.323, called the Session Initiation Proto-
col (SIP), that only covers signaling; it does not recommend specific codecs nor does it
require the use of RTP for real-time transfer. Thus, SIP does not supply all of H.323
functionality.

SIP uses client-server interaction, with servers being divided into two types. A
user agent server runs in a SIP telephone. It is assigned an identifier (e.g.. user @ site),
and can receive incoming calls. The second type of server is intermediate (i.e.. between
two SIP telephones) and handles tasks such as call set up and call forwarding. An inter-
mediate server functions as a proxy server that can forward an incoming call request to
the next proxy server along the path to the called phone. or as a redirect server that tells
a caller how to reach the destination.

To provide information about a call, SIP relies on a companion protocol. the Ses-
sion Description Protocol (SDP). SDP is especially important in a conference call. be-
cause participants join and leave the call dynamically. SDP specifies details such as the
media encoding, protocol port numbers, and multicast address.

29.11 Resource Reservation And Quality Of Service

The term Qualirv Of Service (QoS) refers to statistical performance guarantees that
a network system can make regarding loss, delay. throughput. and jitter. An isochro-
nous network that is engineered to meet strict performance bounds is said to provide
QoS guarantees, while a packet switched network that uses best effort delivery is said to
provide no QoS guarantee. Is guaranteed QoS needed for real-time transter of voice
and video over IP? If so. how should it be implemented? A major controversy sur-
rounds the two questions. On one hand, engineers who designed the telephone system
insist that toll-quality voice reproduction requires the underlying system to provide QoS
guarantees about delay and loss for each phone call. On the other hand. engineers who
designed IP insist that the Internet works reasonably well without QoS guarantees and

Sec. 2911 Resource Reservation And Quality Of Service 549

that adding per-flow QoS is infeasible because routers will make the system both ex-
pensive and slow.

The QoS controversy has produced many proposals. implementations, and experi-
ments. Although it operates without QoS. the Internet is already used to send audio.
Technologies like ATM that were derived from the telephone system model provide
QoS guarantees for each individual connection. Finally. in Chapter 7 we learned that
the 1ETF adopted a conservative differentiated services approach that divides traffic into
separate QoS classes. The differentiated services scheme sacrifices fine grain control
for less complex forwarding.

29.12 QoS, Utilization, And Capacity

The debate over QoS is reminiscent of carlier debates on resource allocation such
as those waged over operating system policies for memory allocation and processor
scheduling. The central issue is utilization: when a network has sufficient resources for
all traffic. QoS constraints are unnecessary; when traffic exceeds network capacity. no
QoS system can satisfy all users’ demands. That is. a network with 1% utilization does
not need QoS. and a network with 101% utilization will fail under any QoS. In effect.
proponents who argue for QoS mechanisms assert that complex QoS mechanisms
achieve two goals. First, by dividing the existing resources among more users. thev
make the system more “‘fair’’. Second. by shaping the traftic from each user. they al-
jow the network to run at higher utilization without danger of collapse.

One of the major arguments against complicated QoS mechanisms arises from im-
provements in .+ performance of underlying networks. Network capacity has increased
dramatically. As long as rapid increases in capacity continue. QoS mechanisms merely
represent unnecessary overhead. However, if demand rises more rapidly than capacity.
QoS may become an economic issue — by associating higher prices with higher levels
of service. ISPs can use cost to ration capacity.

29.13 RSVP

If QoS is needed. how can an [P network provide 1t? Before announcing the dif-
ferentiated services solution. the IETF worked on a scheme that can be used to provide
QoS in an IP environment. The work produced a pair of protocols: the Resource Reser-
Vation Protocol (RSVP) and the Common Open Policy Services (COPS) protocol.

QoS cannot be added to IP at the application layer. Instead, the basic infrastruc-
ture must change — routers must agree to reserve resources (e.g., bandwidth) for each
flow between a pair of endpoints. There are two aspects. First, before data is sent, the
endpoints must send a request that specifies the resources needed, and all routers along
the path must agree to supply the resources. the procedure can be viewed as a form of
signaling. Second, as datagrams traverse the flow, routers need to monitor and control
traffic forwarding. Monitoring. sometimes called traffic policing, is needed to ensure

550 Applications: Voice And Video Over IP (RTP) Chap. 29

that the traffic sent on a flow does not exceed the specified bounds. Control of queue-
ing and forwarding is needed for two reasons. The router must implement a queueing
policy that meets the guaranteed bounds on delay, and the router must smooth packet
bursts. The latter is sometimes referred to as traffic shaping, and is necessary because
network traffic is often bursty. For example, a flow that specifies an average
throughput of 1 Mbps may have 2 Mbps of traffic for a millisecond followed by no
traffic for a millisecond. A router can reshape the burst by temporarily queueing in-
coming datagrams and sending them at a steady rate of 1 Mbps.

RSVP handles reservation requests and replies. It is not a routing protocol, nor
does it enforce policies once a flow has been established. Instead, RSVP operates be-
fore any data is sent. To initiate an end-to-end flow, an endpoint first sends an RSVP
path message to determine the path to the destination; the datagram carrying the mes-
sage uses the router alert option to guarantee that routers examine the message. After it
receives a reply to its path message, the endpoint sends a request message to reserve
resources for the flow. The request specifies QoS bounds desired; each router that for-
wards the request along to the destination must agree to reserve the resources the re-
quest specifies. If any router along the path denies the request, the router uses RSVP to
send a negative reply back to the source. If all systems along the path agree to honor
the request, RSVP returns a positive reply.

Each RSVP flow is simplex (i.e., unidirectional). If an application requires QoS
guarantees in two directions, each endpoint must use RSVP to request a flow. Because
RSVP uses existing routing, there is no guarantee that the two flows will pass through
the same routers, nor does approval of a flow in one direction imply approval in the
other. We can summarize:

An endpoint uses RSVP to request a simplex flow through an IP inter-
net with specified QoS bounds. If routers along the path agree to
honor the request, they approve it; otherwise, they deny it. If an ap-
plication needs QoS in two directions, each endpoint must use RSVP
to request a separate flow.

29.14 COPS

When an RSVP request arrives, a router must evaluate two aspects: feasibility (i.e.,
whether the router has the resources necessary to satisfy the request) and policies (i.e.,
whether the request lies within policy constraints). Feasibility is a local decision — a
router can decide how to manage the bandwidth, memory, and processing power that is
available locally. However, policy enforcement requires global cooperation — all
routers must agree to the same set of policies.

To implement global policies, the IETF architecture uses a two-level model, with
client-server interaction between the levels. When a router receives a RSVP request, it
becomes a client that consults a server known as a Policy Decision Point (PDP) to
determine whether the request meets policy constraints. The PDP does not handle traff-

Sec. 29.14 COPS 551

ic; it merely evaluates requests to see if they satisfy global policies. If a PDP approves
a request, the router must operate as a Policy Enforcement Point PEP to ensure traffic
does not exceed the approved policy.

The COPS protocol defines the client-server interaction between a router and a
PDP (or between a router and a local PDP if the organization has multiple levels of pol-
icy servers). Although COPS defines its own message header, the underlying format
shares many details with RSVP. In particular, COPS uses the same format as RSVP for
individual items in a request message. Thus, when a router receives an RSVP request,
it can extract items related to policy, place them in a COPS message, and send the
result to a PDP.

29.15 Summary

Analog data such as audio can be encoded in digital form: the hardware to do so is
known as a codec. The telephone standard for-digital audio encoding, Pulse Code
Modulation (PCM), produces digital values at 64 Kbps.

RTP is used to transfer real-time data across an IP network. Each RTP message
contains two key pieces of information: a sequence number that a receiver uses to place
messages in order and detect lost datagrams and a media timestamp that a receiver uses
to determine when to play the encoded values. An associated control protocol, RTCP,
is used to supply information about sources and to allow a mixer to combine several
streams.

A debate continues over whether Quality of Service (QoS) guarantees are needed
to provide reu! ime. Before announcing a differentiated services approach, the IETF
designed a pair of protocols that can be used to provide per-flow QoS. Endpoints use
RSVP to request a flow with specific QoS; intermediate routers either approve or deny
the request. When an RSVP request arrives, a router uses the COPS protocol to contact
a Policy Decision Point and verify that the request meets policy constraints.

FOR FURTHER STUDY

Schulzrinne et. al. [RFC 1889] gives the standard for RTP and RTCP. Perkins et.
al. [RFC 2198] specifies the transmission of redundant audio data over RTP, and
Schulzrinne [RFC 1890] specifies the use of RTP with an audio-video conference.
Schulzrinne, Rao, and Lanphier [RFC 2326] describes a related protocol used for
streaming of real-time traffic.

Zhang et. al. [RFC 2205] contains the specification for RSVP. Boyle et. al.
[draft-rap-cops-06.txt] describes COPS.

552

Applications: Voice And Video Over IP (RTP) Chap. 29

EXERCISES

29.1 Read about the Real Time Streaming Protocol, RTSP. What are the major differences
between RTSP and RTP?

29.2 Argue that although bandwidth is often cited as an example of the facilities a QoS
mechanism can guarantee, delay is a more fundamental resource. (Hint: which con-
straint can be eased with sufficient money?)

29.3 If an RTP message arrives with a sequence number far greater than the sequence expect-
ed, what does the protocol do? Why?

294 Are sequence numbers necessary in RTP, or can a timestamp be used instead? Explain.

29.5 Would you prefer an internet where QoS was required for all traffic? Why or why not?

29.6 Measure the utilization on your connection to the Internet. If all traffic required QoS

reservation, would service be better or worse? Explain.

30

Applications: Internet
Management (SNMP)

30.1 Introduction

In addition to protocols that provide network level services and application pro-
grams that use those services, an internet needs software that allows managers to debug
problems, control routing, and find computers that violate protocol standards. We refer
to such activities as internet management. This chapter considers the ideas behind
TCP/IP internet management software, and describes an internet management protocol.

30.2 The Level Of Management Protocols

Originally, many wide area networks included management protocols as part of
their link level protocols. If a packet switch began misbehaving, the network manager
could instruct a neighboring packet switch to send it a special control packet. Control
packets caused the receiver to suspena normal operation and respond to commands from
the manager. The manager could interrogate the packet switch to identify problems, ex-
amine or change routes, test one of the communication interfaces, or reboot the switch.
Once managers repaired the problem, they could instruct the switch to resume normal
operations. Because management tools were part of the lowest level protocol, managers
were often able to control switches even if higher level protocols failed.

Unlike a homogeneous wide area network, a TCP/IP internet does not have a sin-
gle link level protocol. Instead, the internet consists of multiple physical networks in-
terconnected by IP routers. As a result, internet management differs from network

553

554 Applications: Internet Management (SNMP) Chap. 30

management. First, a single manager can control heterogeneous devices, including 1P
routers, bridges, modems. workstations, and printers. Second, the controlled entities
may not share a common link level protocol. Third, the set of machines a manager con-
trols may lie at arbitrary points in an internet. In particular, a manager may need to
control one or more machines that do not attach to the same physical network as the
manager's computer. Thus, it may not be possible for a manager to communicate with
machines being controlled unless the management software uses protocols that provide
end-to-end connectivity across an internet. As a consequence, the internet management
protocol used with TCP/IP operates above the transport level:

In a TCP/IP internet, a manager needs to examine and control routers
and other network devices. Because such devices attach to arbitrary
networks, protocols for internet management operate at the applica-
tion level and communicate using TCP/IP transport-level protocols.

Designing internet management software to operate at the application level has
several advantages. Because the protocols can be designed without regard to the under-
lying network hardware, one set of protocols can be used for all networks. Because the
protocols can be designed without regard to the hardware on the managed machine, the
same protocols can be used for all managed devices. From a manager’s point of view,
having a single set of management protocols means uniformity — all routers respond to
exactly the same set of commands. Furthermore, because the management software
uses IP for communication, a manager can control the routers across an entire TCP/IP
internet without having direct attachment to every physical network or router.

Of course, building management software at the application level also has disad- -
vantages. Unless the operating system, IP software, and transport protocol software
work correctly, the manager may not be able to contact a router that needs managing.
For example, if a router’s routing table becomes damaged, it may be impossible to
correct the table or reboot the machine from a remote site. If the operating system on a
router crashes, it will be impossible to reach the application program that implements
the internet management protocols even if the router can still field hardware interrupts
and route packets.

30.3 Architectural Model

Despite the potential disadvantages, having TCP/IP management software operate
at the application level has worked well in practice. The most significant advantage of
placing network management protocols at a high level becomes apparent when one con-
siders a large internet, where a manager’s computer does not need to attach directly to
all physical networks that contain managed entities. Figure 30.1 shows an example of
the architecture.

Sec. 30.3 Architectural Model

wn
wn
w

-a— Devices being managed
N

®
!

Manager’s Host

\\

Router being managed

/ Other devices

Figure 30.1 Example of network management. A manager invokes manage-
ment client (MC) software that can contact management agent
(MA) software that runs on devices throughout the internet.

As the figure shows, client software usually runs on the manager’s workstation.
Each participating router or host} runs a server program. Technically, the server
software is called a management agent or merely an agent. A manager invokes client
software on the local host computer and specifies an agent with which it communicates.
After the client contacts the agent, it sends queries to obtain information or it sends
commands to change conditions in the router. Of course, not all devices in a large in-
ternet fall under a single manager. Most managers only control devices at their local
sites; a large site may have multiple managers.

tRecall that the TCP/IP term host can refer o a device (e.g., a printer) or a conventional computer.

556 Applications: Internet Management (SNMP) Chap. 30

Internet management software uses an authentication mechanism to ensure only au-
thorized managers can access or control a particular device. Some management proto-
cols support multiple levels of authorization, allowing a manager specific privileges on
each device. For example, a specific router could be configured to allow several
managers to obtain information while only allowing a select subset of them to change
information or control the router.

30.4 Protocol Framework

TCP/IP network management protocolst divide the management problem into two
parts and specify separate standards for each part. The first part concerns communica-
tion of information. A protocol specifies how client software running on a manager’s
host communicates with an agent. The protocol defines the format and meaning of
messages clients and servers exchange as well as the form of names and addresses. The
second part concerns the data being managed. A protocol specifies which data items a
managed device must keep as well as the name of each data item and the syntax used to
express the name.

30.4.1 A Standard Network Management Protocol

The TCP/IP standard for network management is the Simple Network Management
Protocol (SNMP). The protocol has evolved through three generations. Consequently.
the current version is known as SNMPv3, and the predecessors are known as SNMPv]
and SNMPv2. The changes have been minor — all three versions use the same general
framework, and many features are backward compatible.

In addition to specifying details such as the message format and the use of tran-
sport protocols. the SNMP standard defines the set of operations and the meaning of
each. We will see that the approach is minimalistic: a tew operations provide all func-
tionality.

30.4.2 A Standard For Managed Information

A device being managed must keep control and status information that the manager
can access. For example. a router Keeps statistics on the status of its network interfaces,
incoming and outgoing packet traffic, dropped datagrams. and error messages generated;
a modem keeps statistics about the number of characters sent and received. baud rate,
and calls accepted. Although it allows a manager to access statistics. SNMP does not
specify exactly which data can be accessed on which devices. Instead. a separate stan-
dard specifies the details for each type of device. Known as a Management Information
Base (MIB). the standard specifies the data items a managed device must keep, the
operations allowed on each, and the meanings. For example. the MIB for IP specifies
that the software must keep a count of all octets that arrive over each network interface
and that network manacement software can only read the count.

+Technically. there is a distinction hetween internet management protocols and network management pro-
tocols. Historically, however. TCP/IP internet management protocols are known as network management pro-
tocols: we will follow the accepted terminology.

Sec. 30.4 Protocol Framework 557

The MIB for TCP/IP divides management information into many categories. The
choice of categories is important because identifiers used to specify items include a
code for the category. Figure 30.2 lists a few examples.

MIB category Includes Information About
system The host or router operating system
interfaces Individual network interfaces
at Address translation (e.g., ARP mappings)
ip Internet Protocol software
icmp Internet Control Message Protocol software
tcp Transmission Control Protocol software
udp User Datagram Protocol software
ospf Open Shortest Path First software
bgp Border Gateway Protocol software
rmon Remote network monitoring
rip-2 Routing Information Protocol software
dns Domain Name System software
Figure 30.2 Example categories of MIB intormation. The category is encod-

ed in the identifier used o specify an object.

Keeping the MIB definition independent of the network management protocol has
advantages for both vendors and users. A vendor can include SNMP agent software in
a product such as a router, with the guarantee that the software will continue to adhere
to the standard after new MIB items are defined. A customer can use the same network
management client software to manage multiple devices that have slighdy different ver-
sions of a MIB. Of course, a device that does not have new MIB items cannot provide
the information in those items. However, because all managed devices use the same
language for communication, they can all parse a query and either provide the requested
information or send an error message explaining that they do not have the requested
item.

30.5 Examples of MIB Variables 9

Versions 1 and 2 of SNM? each collected variables together in a single large MIB,
with the entire set documented in a single RFC. After publication of the second genera-
tion, MIB-II, the 1ETF took a different approach by allowing the publication of many
individual MiB documents that each specify the variables for a specific type of device.
As a result, more than 100 separate MIBs have been defined as part of the standards
process; they specify more than 10,000 individual variables. For example, separate
RFCs now exist that specify the MIB variables associated with devices such as: a
hardware bridge, an uninterruptible power supply, an ATM switch, and a dialup
modem. In addition, many vendors have defined MIB variables for their specific
hardware or software products.

558 Applications: Internet Management (SNMP) Chap. 30

Examining a few of the MIB data items associated with TCP/IP protocols will help
clarify the contents. Figure 30.3 lists example MIB variables along with their
categories.

MIB Variable Category Meaning
sysUpTime system Time since last reboot
ifNumber interfaces Number of network interfaces
iftMtu interfaces MTU for a particular interface
ipDefaultTTL ip Value IP uses in time-to-live field
ipinReceives ip Number of datagrams received
ipForwDatagrams ip Number of datagrams forwarded
ipOutNoRoutes ip Number of routing failures
ipReasmOKs ip Number of datagrams reassembled
ipFragOKs ip Number of datagrams fragmented
ipRoutingTable ip IP Routing table
icmpInEchos icmp Number of ICMP Echo Requests received
tcpRtoMin tcp Minimum retransmission time TCP allows
tcpMaxConn tcp Maximum TCP connections allowed
tcpinSegs tcp Number of segments TCP has received
udpinDatagrams udp Number of UDP datagrams received

Figure 30.3 Examples of MIB variables along with their categories.

Most of the items listed in Figure 30.3 are numeric — each value can be stored in
a single integer. However, the MIB also defines more complex structures. For exam-
ple, the MIB variable ipRoutingTable refers to an entire routing table. Additional MIB
variables define the contents of a routing table entry, and allow the network manage-
ment protocols to reference an individual entry in the table, including the prefix, address
mask, and next hop fields. Of course, MIB variables present only a logical definition of
each data item — the internal data structures a router uses may differ from the MIB de-
finition. When a query arrives, software in the agent on the router is responsible for
mapping between the MIB variable and the data structure the router uses to store the in-

formation.
\

30.6 The Structure Of Management Information

In addition to the standards that specify MIB variables and their meanings, a
separate standard specifies a set of rules used to define and identify MIB variables. The
rules are known as the Structure of Management Information (SMI) specification. To
keep network management protocols simple, the SMI places restrictions on the types of
variables allowed in the MIB, specifies the rules for naming those variables, and creates
rules for defining variable types. For example, the SMI standard includes definitions of
terms like IpAddress (defining it to be a 4-octet string) and Counter (defining it to be an

Sec. 30.6 The Structure Of Management Information 559

integer in the range of 0 to 2%- 1), and specifies that they are the terms used to define
MIB variables. More important, the rules in the SMI describe how the MIB refers to
tables of values (e.g., the IP routing table).

30.7 Formal Definitions Using ASN.1

The SMI standard specifies that all MIB variables must be defined and referenced
using 1SO’s Abstract Syntax Notation | (ASN.1%). ASN.I is a formal language that has
two main features: a notation used in documents that humans read and a compact en-
coded representation of the same information used in communication protocols. In both
cases, the precise, formal notation removes any possible ambiguities from both the
representation and meaning. For example, instead of saying that a variable contains an
integer value, a protocol designer who uses ASN.1 must state the exact form and range
of numeric values. Such precision is-especially important when implementations in-
clude heterogeneous computers that do not all use the same representations for data
items.

Besides keeping standards documents unambiguous, ASN.1 also helps simplify the
implementation of network management protocols and guarantees interoperability. It
defines precisely how to encode both names and data items in a message. Thus, once
the documentation of a MIB has been expressed using ASN.1, the human readable form
can be translated directly and mechanically into the encoded form used in messages. In
summary:

The TCP/IP network management protocols use a formal notation
called ASN.] to define names and types for variables in the manage-
ment information base. The precise notation makes the form and con-
tents of variables unambiguous.

30.8 Structure And Representation Of MIB Object Names

We said that ASN.1 specifies how to represent both data items and names. How-
ever, understanding the names used for MIB variables requires us to know about the
underlying namespace. Names used for MIB variables are taken from the object identif-
ier namespace administered by ISO and ITU. The key idea behind the object identifier
namespace is that it provides a namespace in which all possible objects can be designat-
ed. The namespace is not restricted to variables used in network management — it in-
cludes names for arbitrary objects (e.g., each international protocol standard document
has a name).

The object identifier namespace is absolute (global), meaning that names are struc-
tured to make them globally unique. Like most namespaces that are large and absolute,
the object identifier namespace is hierarchical. Authority for parts of the namespace is
subdivided at each level, allowing individual groups to obtain authority to assign some
of the names without consulting a central authority for each assignmenti.

+ASN.1 is usually pronounced by reading the dot: **A-S-N dot 1"
tReaders should recall from the Domain Name System discussion in Chapter 24 how authority for a
hierarchical namespace is subdivided.

560 Applications: Internet Management (SNMP) Chap. 30

The root of the object identifier hierarchy is unnamed, but has three direct descen-
dants managed by: 1SO, ITU, and jointly by ISO and ITU. The descendants are as-
signed both short text strings and integers that identify them (the text strings are used
by humans to understand object names; computer software uses the integers to form
compact, encoded representations of the names). SO has allocated one subtree for use
by other national or international standards organizations (including U.S. standards or-
ganizations). and the U.S. National Institute for Standards and Technology+ has allocat-
ed a subtree for the U.S. Department of Defense. Finally, the IAB has petitioned the
Department of Defense to allocate it a subtree in the namespace. Figure 30.4 illustrates
pertinent parts of the object identifier hierarchy and shows the position of the node used
by TCP/IP network management protocols.

unnamed

experi-

mental private

4

Figure 30.4 Part of the hicrarchical object identifier namespace used to name
MIB variables. An object’s name consists of the numeric labels
along a path from the root to the object.

FNIST was tormerly the National Burcau of Standards.

Sec. 30.8 Structure And Representation Of MIB Object Names

tn
(8,8

The name of an object in the hierarchy is the sequence of numeric labels on the
nodes along a path from the root to the object. The sequence is written with periods
separating the individual components. For example. the name 1.3.6.1.2 denotes the
node labeled mgmt. the Internet management subtree. The MIB has been assigned a
node under the mgmt subtree with label mib and numeric value /. Because all MIB
variables fall under that node. they all have names beginning with the prefix
1.3.6.1.2.1.

Earlier we said that the MIB groups variables into categories. The exact meaning
of the categories can now be explained: they are the subtrees of the mib node of the ob-
ject identifier namespace. Figure 30.5 illustrates the idea by showing part of the nam-
ing subtree under the mib node.

label from the root to
this point is 1.3 .6

internet
1

private
4

Figure 30.5 Part of the object identifier namespace under the IAB mib node.
Each subtree corresponds to one of the categories of MIB vari-
ables.

Two examples will make the naming syntax clear. Figure 30.5 shows that the
category labeled ip has been assigned the numeric value 4. Thus, the names of all MIB

562 Applications: Internet Management (SNMP) Chap. 30

variables corresponding to IP have an identifier that begins with the prefix
1.3.6.1.2.1.4. If one wanted to write out the textual labels instead of the numeric
representation, the name would be:

iso.org.dod.internet .mgmt.mib.ip

A MIB variable named ipInReceives has been assigned numeric identifier 3 under the ip
node in the namespace, so its name is:

iso.org.dod.internet .mgmt.mib . ip.ipInReceives
and the corresponding numeric representation is:
1.3.6.1.2.7.4.3

When network management protocols use names of MIB variables in messages, each
name has a suffix appended. For simple variables, the suffix O refers to the instance of
the variable with that name. So, when it appears in a message sent to a router, the
numeric representation ot ip/nReceives is:

1.3.6.1.2.1.4.3.0

which refers to the instance of ip/nReceives on that router. Note that there is no way to
guess the numeric value or suffix assigned to a variable. One must consult the pub-
lished standards to find which numeric values have been assigned to each object type.
Thus, programs that provide mappings between the textual form and underlying numeric
values do so entirely by consulting tables of equivalences — there is no closed-form
computation that performs the transformation.

As a second, more complex example, consider the MIB variable ipAddrTable,
which contains a list of the IP addresses for each network interface. The variable exists
in the namespace as a subtree under ip, and has been assigned the numeric value 20.
Therefore, a reference to it has the prefix:

iso.org.dod.internet .mgmt.mib . ip . ipAddrTable

with a numeric equivalent:

1.3.6.1.2.1.4.20

In programming language terms, we think of the IP address table as a one-dimensional
array, where each element of the array consists of a structure (record) that contains five
items: an IP address, the integer index of an interface corresponding to the entry, an IP
subnet mask, an IP broadcast address, and an integer that specifies the maximum
datagram size that the router will reassemble. Of course, it is unlikely that a router has
such an array in memory. The router may keep this information in many variables or

Sec. 30.8 Structure And Representation Of MIB Object Names 563

may need to follow pointers to find it. However, the MIB provides a name for the array
as if it existed, and allows network management software on individual routers to map
table references into appropriate internal variables. The point is:

Although they appear to specify details about data structures, MIB
standards do not dictate the implementation. Instead, MIB definitions
provide a uniform, virtual interface that managers use to access data;
an agent must translate between the virtual items in a MIB and the
internal implementation.

Using ASN.1 style notation, we can define ipAddrTable:
ipAddrTable ::= SEQUENCE OF IpAddrEntry

where SEQUENCE and OF are keywords that define an ipAddrTable to be a one-
dimensional array of IpAddrEntrys. Each entry in the array is defined to consist of five
fields (the definition assumes that IpAddress has already been defined).

IpAddrEntry ::= SEQUENCE {
ipAdEntAddr
IpAddress,
ipAdEntifIndex
INTEGER,
ipAdEntNetMask
IpAddress,
ipAdEntBcastAddr
IpAddress,
ipAdEntReasmMaxSize
INTEGER (0..65535)

}

Further definitions must be given to assign numeric values to ipAddrEntry and to
each item in the IpAddrEntry sequence. For example, the definition:

ipAddrEntry { ipAddrTable I }

specifies that ipAddrEntry falls under ipAddrTable and has numeric value /. Similarly,
the definition:

ipAdEntNetMask { ipAddrEntry 3 }
assigns ipAdEntNetMask numeric value 3 under ipAddrEntry.

We said that ipAddrTable was like a one-dimensional array. However, there is a
significant difference in the way programmers use arrays and the way network manage-

564 Applications: Internet Management (SNMP) Chap. 30

ment software uses tables in the MIB. Programmers think of an array as a set of ele-
ments that have an index used to select a specific element. For example, the program-
mer might write xvz/3] to select the third element from array xyz. ASN.l syntax does
not use integer indices. Instead, MIB tables append a suffix onto the name to select a
specific element in the table. For our example of an IP address table, the standard
specifies that the suffix used to select an item consists of an IP address. Syntactically,
the IP address (in dotted decimal notation) is concatenated onto the end of the object
name to form the reference. Thus, to specify the network mask field in the IP address
table entry corresponding to address 128.10.2. 3, one uses the name:

iso.org.dod.internet.mgmt.mib.ip.ipAddrTable.ipAddrEntry.ipAdEntNetMask.128.10.2.3
which, in numeric form, becomes:
1.3.6.1.2.1.4.20.1.3.128.10.2.3

Although concatenating an index to the end of a name may seem awkward, it provides a
powerful tool that allows clients to search tables without knowing the number of items
or the type of data used as an index. The next section shows how network management
protocols use this feature to step through a table one element at a time.

30.9 Simple Network Management Protocol

Network management protocols specify communication between the network
management client program a manager invokes and a network management server pro-
gram executing on a host or router. In addition to defining the form and meaning of
messages exchanged and the representation of names and values in those messages. net-
work management protocols also define administrative relationships among routers be-
ing managed. That is, they provide for authentication of managers.

One might expect network management protocols to contain a large number of
commands. Some early protocols, for example, supported commands that allowed the
manager to: reboot the system, add or delete routes, disable or enable a particular net-
work interface, or remove cached address bindings. The main disadvantage of building
management protocols around commands arises from the resulting complexity. The
protocol requires a separate command for each operation on a data item. For example,
the command to delete a routing table entry differs from the command to disable an in-
terface. As a result, the protocol must change to accommodate new data items.

SNMP takes an interesting alternative approach to network management. Instead
of defining a large set of commands, SNMP casts all operations in a fetch-store para-
digmt. Conceptually, SNMP contains only two commands that allow a manager to
fetch a value from a data item or store a value into a data item. All other operations are
defined as side-effects of these two operations. For example, although SNMP does not

tThe fetch-store paradigm comes from a management protocol system known as HEMS. See Partridge
and Trewitt [RFCs 1021, 1022, 1023, and 1024] for details.

Sec. 30.9 Simple Network Management Protocol 565

have an explicit reboor operation, an equivalent operation can be defined by declaring a
data item that gives the time until the next reboot and allowing the manager to assign
the item a value (including zero).

The chief advantages of using a fetch-store paradigm are stability, simplicity. and
flexibility. SNMP is especially stable because its definition remains fixed. even though
new data items are added to the MIB and new operations are defined as side-effects of
storing into those items. SNMP is simple to implement, understand. and debug because
it avoids the complexity of having special cases for cach command. Finally, SNMP is
especially flexible because it can accommodate arbitrary commands in an elegant frame-
work.

From a manager’s point of view, of course, SNMP remains hidden. The user inter-
face to network management software can phrase operations as imperative commands
(e.g.. reboor). Thus. there is little visible difference between the way a manager uses
SNMP and other network management protocols. In fact, vendors sell network manage-
ment software that offers a graphical user interface. Such software displays diagrams of
network connectivity, and uses a point-and-click style of interaction.

As Figure 30.6 shows, SNMP offers more than the two operations we have
described.

Command Meaning
get-request Fetch a value from a specific variable
get-next-request Fetch a value without knowing its exact name
get-bulk-request Fetch a large volume of data (e.g., a table)

response A response to any of the above requests
set-request Store a value in a specific variable
inform-request Reference to third-part data (e.g., for a proxy)
snmpv2-trap Reply triggered by an event

report Undefined at present

Figure 30.6 The set of possible SNMP operations. Get-next-request allows
the manager (o iterate through a table of items.

Operations get-request and set-request provide the basic fetch and store operations:
response provides the reply. SNMP specifies that operations must be atomic, meaning
that if a single SNMP message specifies operations on multiple variables, the server ei-
ther performs all operations or none of them. In particular, no assignments will be
made if any of them are in error. The trap operation allows managers to program
servers to send information when an event occurs. For example, an SNMP server can
be programmed to send a manager a trap message whenever one of the attached net-
works becomes unusable (i.e., an interface goes down).

566 Applications: Internet Management (SNMP) Chap. 30
30.9.1 Searching Tables Using Names

We said that ASN.1 does not provide mechanisms for declaring arrays or indexing
them in the usual sense. However, it is possible to denote individual elements of a table
by appending a suffix to the object identifier for the table. Unfortunately, a client pro-
gram may wish to examine entries in a table for which it does not know all valid suf-
fixes. The get-next-request operation allows a client to iterate through a table without
knowing how many items the table contains. The rules are quite simple. When sending
a get-next-request, the client supplies a prefix of a valid object identifier, P. The agent
examines the set of object identifiers for all variables it controls, and sends a response
for the variable that occurs next in lexicographic order. That is, the agent must know
the ASN.1 names of all variables and be able to select the first variable with object
identifier greater than P. Because the MIB uses suffixes to index a table, a client can
send the prefix of an object identifier corresponding to a table and receive the first ele-
ment in the table. The client can send the name of the first element in a table and re-
ceive the second, and so on.

Consider an example search. Recall that the ipAddrTable uses IP addresses to
identify entries in the table. A client that does not know which IP addresses are in the
table on a given router cannot form a complete object identifier. However, the client
can still use the get-next-request operation to search the table by sending the prefix:

iso.org.dod.internet .mgmt .mib . ip .ipAddrTable . ipAddrEntry . ipAdEntNetMask

which, in numeric form, is:

1.3.6.1.2.1.4.20.1.3

The server returns the network mask field of the first entry in ipAddrTable. The client
uses the full object identifier returned by the server to request the next item in the table.

30.10 SNMP Message Format

Unlike most TCP/IP protocols, SNMP messages do not have fixed fields. Instead,
they use the standard ASN.1 encoding. Thus, a message can be difficult for humans to
decode and understand. After examining the SNMP message definition in ASN.1 nota-
tion, we will review the ASN.1 encoding scheme briefly, and see an example of an en-
coded SNMP message.

Figure 30.7 shows how an SNMP message can be described with an ASN.1-style
grammar. In general, each item in the grammar consists of a descriptive name followed
by a declaration of the item’s type. For example, an item such as

msgVersion INTEGER (0..2147483647)

declares the name msgVersion to be a nonnegative integer less than or equal to
2147483647.

Sec. 30.10 SNMP Message Format 567

SNMPv3Message =
SEQUENCE {
msgVersion INTEGER (0..2147483647).

-- note: version number 3 is used for SNMPv3
msgGlobalData HeaderData,
msgSecurityParameters OCTET STRING,
msgData ScopedPduData

}

Figure 30.7 The SNMP message format in ASN.1-style notation. Text fol-
lowing two consecutive dashes is a comment.

As the figure shows, each SNMP message consists of four main parts: an integer
that identifies the protocol version, additional header data, a set of security parameters,
and a data arca that carries the payload. A precise definition must be supplied for each
of the terms used. For example, Figure 30.8 illustrates how the contents of the Header-
Data section can be specified.

HeaderData ::= SEQUENCE {
msgID INTEGER (0..2147483647),
- used to match responses with requests
msgMaxSize INTEGER (484..2147483647),
-- maximum size reply the sender can accept
msgFlags OCTET STRING (SIZE(1)),
-~ Individual flag bits specify message characteristics
-- bit 7 authorization used
- bit 6 privacy used
- bit 5 reportability (i.e., a response needed)
msgSecurityModel INTEGER (1..2147483647)
- determines exact format of security parameters that follow

[l

}

Figure 30.8 The definition of the HeaderData area in an SNMP message.

The data area in an SNMP message is divided into protocol data units (PDUS).
Each PDU consists of a request (sent by client) or a response (sent by an agent).
SNMPv3 allows each PDU to be sent as plain text or to be encrypted for privacy.
Thus, the grammar specifies a CHOICE. In programming language terminology, the
concept is known as a discriminated union.

ScopedPduData ::= CHOICE {
plaintext ScopedPDU,
encryptedPDU OCTET STRING - encrypted ScopedPDU value

}

568 Applications: Internet Management (SNMP) Chap. 30

An encrypted PDU begins with an ident.fier of the enginet that produced it. The
engine ID is followed by the name of the context and the octets of the encrypted mes-
sage.

ScopedPDU ::= SEQUENCE {

contextEnginelD OCTET STRING,

contextName OCTET STRING.

data ANY -- ¢.g., a PDU as defined below
}

The item labeled data in the ScopedPDU definition has a type ANY because field
contextName defines the exact details of the item. The SNMPv3 Message Processing
Model (v3MP) specifies that the data must consist of one of the SNMP PDUs as Figure
30.9 illustrates:

PDU ::=
CHOICE {
get-request
GetRequest-PDU,
get-next-request
GetNextRequest-PDU,
get-bulk-request
GetBulkRequest-PDU,
response
Response-PDU,
set-request
SetRequest-PDU,
inform-request
InformRequest-PDU,
snmpV2-trap
SNMPv2-Trap-PDU.
report
Report-PDU,
}

Figure 30.9 The ASN.! definitions of an SNMP PDU. The syntax for cach
request type must be specified further.

The definition specifies that each protocol data unit consists of one of eight types.
To complete the definition of an SNMP message, we must further specify the syntax of
the eight individual types. For example. Figure 30.10 shows the definition of a get-
request.

TSNMPv3 distinguishes between an applicction that uses the service SNMP supplies and an engine,
which is the underlying software that trunsmits requests and receives responses.

Sec. 30.10 SNMP Message Format 569

GetRequest-PDU = [0]
IMPLICIT SEQUENCE {
request-id
Integer32,
eITOr-status
INTEGER (0..18),
error-index
INTEGER (0..max-bindings).
variable-bindings
VarBindList

Figure 30.10 The ASN.1 definition of a ger-request message. Formally. the
message 1s defined o be a GerRequest-PDU .

Further definitions in the standard specify the remaining undefined terms. Both
error-status and error-index are single octet integers which contain the value zero in a
request. It an error occurs, the values sent in a response identity the cause of the error.
Finally, VarBindList contains a list ot object identifiers for which the client seeks
values. In ASN.1 terms, the definitions specity that VarBindList is a sequence of pairs
of object name and value. ASN.Il represents the pairs as a sequence of two items.
Thus, in the simplest possible request, VarBindList is a sequence of two items: a name
and a null.

30.11 Example Encoded SNMP Message

The encoded form ot ASN.1 uses variable-length fields to represent items. In gen-
eral, each field begins with a header that specifies the type of object and its length in
bytes. For example, each SEQUENCE begins with an octet containing 30 (hexade-
cimal); the next octet specifies the number of following octets that comprise the se-
quence.

Figure 30.11 contains an example SNMP message that illustrates how values are
encoded into octets. The message is a ger-request that specifies data item sysDescr
(numeric object identifier /.3.6.7.2.7/.1./.0). Because the example shows an actu-
al message, it includes many details. In particular, the message contains a msgSecuri-
tyParameters section which has not been discussed above. This particular message uses
the UsmSecurityParameters form of security parameters. It should be possible, howev-
er, to correlate other sections of the message with the definitions above.

570 Applications: Internet Management (SNMP) Chap. 30

30 67 02 01 03
SEQUENCE len=103 INTBGER len=l wvers=3

30 0D 02 01 22
SEQUENCE len=13 INTEGER len=1 msgID=42

02 02 08 00
INTEGER len=2 maxmsgsize=2048

04 01 04
string len=1 msgFlags=0x04 (bits mean noAuth, noPriv, reportable)

02 01 03
INTEGER len=1 used-based security

04 25 30 23
string len=37 SEQUENCE len=35 UsmSecurityParameters
04 oc 00 00 00 63 00 00 00
string len=12 msgAuthoritativebEnginelD ...
Al Cco 93 8E 23
engine is at IP address 192.147.142.35, port 161
02 01 00
INTEGER len=1 msgAuthoritativeEngineBoots=0
02 01 00
INTEGER len=1 msg2uthoritativeEngineTime=0
04 09 43 6F 6D 65 72 42 6F
string len=9 = ----- msgUserName value is "CamerBook"-—-——=—====-=
6F 6B
04 00
string len=0 msgAuthenticationParameters (nome)
04 00
string len=0 msgPrivacyParameters (none)
30 2C
SEQUENCE len=44 ScopedPDU
04 oC 00 00 00 63 00 00
string len=12 contextEngineID-——————
00 Al c0 93 8E 23
04 00

string len=0 contextName = "" (default)

Sec. 30.11 Example Encoded SNMP Message 571

CONTEXT [0] IMPLICIT SEQUENCE

A0 1A
getreqg. len=26
02 02 4D C6
INTEGER len=2 request-id = 19910
02 01 00
INTEGER len=1 error-status = noError(0)
02 01 00
INTHGER len=1 error-index=0
30 OE
SEHQUENCE len=14 VarBindList
30 0C
SEQUENCE len=12 VarBind
06 08
OBJECT IDENTIFIER name
2B 06 01 02 01 01 01 00
1.3 . 6 . 1 . 2 . 1 . 1 . 1 . 0 (sysDescr.0)
05 00

mill len=0 (no value specified)

Figure 30.11 The cncoded form of an SNMPv3 ger-request for data item sys-
Descr with octets shown in hexadecimal and a comment ex-
plaining their meaning below. Related octets have been
grouped onto lines; they are contiguous in the message.

As Figure 30.11 shows, the message starts with a code for SEQUENCE which has
a length of 103 octetst. The first item in the sequence is a 1-octet integer that specifies
the protocol version; the value 3 indicates that this is an SNMPv3 message. Successive
fields define a message ID and the maximum message size the sender can accept in a
reply. Security information, including the name of the user (ComerBook) follows the
message header.

The GetRequest-PDU occupies the tail of the message. The sequence labeled
ScopedPDU specifies a context in which to interpret the remainder of the message. The
octet A0 specifies the operation as a get-Request. Because the high-order bit is turned
on, the interpretation of the octet is context specific. That is, the hexadecimal value A0
only specifies a GetRequest-PDU when used in context; it is not a universally reserved
value. Following the request octet, the length octet specifies the request is 26 octets
long. The request ID is 2 octets, but each of the error-status and error-index are one oc-

+Sequence items occur frequently in an SNMP message because SNMP uses SEQUENCE instead of con-
ventional programming language constructs like array or struct.

572 Applications: Internet Management (SNMP) Chap. 30

tet. Finally. the sequence of pairs contains one binding, a single object identifier bound
to a null velue. The identifier is encoded as expected except that the first two numeric
labels are combined into a single octet.

30.12 New Features In SNMPv3

We said that version 3 of SNMP represents an evolution that follows and extends
the basic framework of earlicr versions. The primary changes arise in the areas of secu-
rity and administration. The goals are twofold. First, SNMPv2 is designed to have
both general and flexible security policies. making it possible for the interactions
between a manager and managed devices to adhere to the security policies an organiza-
tion specifics. Second. the system is designed to make administration of security easy.

To achieve generality and flexibility, SNMPv3 includes facilities for several as-
pects of security. and allows each to be configured independently. For example, v3
supports message authentication to ensure that instructions originate from a valid
manager. privacy to ensure that no one can read messages as they pass between a
manager’s station and a managed device, and awiliorization and view-based access con-
trol o ensure that only authorized managers access particular items. To make the secu-
rity system easy to configure or change. v3 allows remote configuration. meaning that
an authorized manager can change the configuration of security items listed above
without being physically present at the device.

30.13 Summary

Network management protocols allow a manager to monitor and control routers
and hosts. A network management client program executing on the manager’s worksta-
tion contacts one or more servers, called agents, running on the devices to be controlled.
Because an internet consists of heterogeneous machines and networks, TCP/IP manage-
ment software executes as application programs and uses internet transport protocols
(e.g., UDP) for communication between clients and servers.

The standard TCP/IP network management protocol is SNMP, the Simple Network
Management Protocol. SNMP defines a low-level management protocol that provides
two conceptual operations: fetch a value from a variable or store a value into a variable.
In SNMP, other operations occur as side-effects of changing values in variables. SNMP
defines the format of messages that travel between a manager’s computer and a
managed entity.

A set of companion standards to SNMP define the set of variables that a managed
entity maintains. The set of variables comprise a Management Information Base (MIB).
MIB variables are described using ASN.1, a formal language that provides a concise en-
coded form as well as a precise human-readable notation for names and objects. ASN.1
uses a hierarchical namespace to guarantee that all MIB names are globally unique
while still allowing subgroups to assign parts of the namespace.

